ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Masaki Goto, Tadafumi Sano, Kunihiro Nakajima, Takashi Kanda, Atsushi Sakon, Kengo Hashimoto
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1814-1822
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2143707
Articles are hosted by Taylor and Francis Online.
Feynman-α analyses for a critical state and several subcritical states of the UTR-KINKI reactor have been carried out using two Bi14Ge3O12 (BGO) gamma-ray detectors free from radioactivation of the scintillator. As a statistical index of the analyses, the covariance-to-mean ratio of gamma counts between these detectors instead of the variance-to-mean ratio of each of the detectors is employed to get rid of a large negative correlation originating from the counting loss of a signal processing circuit. In the gate width dependence of the covariance-to-mean ratio measured at each reactor state, not only a familiar neutron-correlation component but also another small positive correlation between prompt gammas can clearly be observed. The prompt-neutron decay constant α determined considering the positive gamma correlation agrees very well with that obtained from a conventional Feynman-α analysis based on neutron detection. Neglecting the gamma correlation term, the decay constant is much overestimated with an increase in subcriticality, and the maximum overestimation reaches about 24% at a shutdown state with a subcriticality of 1.49%Δk/k.