ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. L. Wormald, J. C. Holmes, M. L. Zerkle
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1800-1813
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2138063
Articles are hosted by Taylor and Francis Online.
Zirconium carbide (ZrC) is a candidate material for advanced high temperature reactors, including space nuclear thermal propulsion applications. Thermal scattering laws (TSLs) are generated in the incoherent approximation for carbon bound in ZrC [C(ZrC)] and zirconium bound in ZrC [Zr(ZrC)], using ab initio lattice dynamics methods. Disordered alloy theory is introduced to improve treatment of isotopic composition within the elastic scattering cross section. Localized higher-energy vibrational modes and the presence of a phonon band gap in C(ZrC) cause quantized oscillation in the TSL atypical of nonhydrogenous solids. These oscillations yield a significant likelihood of large energy downscattering and upscattering interactions such that the quanta of energy transfer affecting neutron thermalization is substantially greater than classically expected. MC21 critical mass calculations of ZrC mixtures with high-enriched uranium demonstrate an impact of TSLs when compared to a free-gas treatment for thermal neutron–driven 235U loadings. The critical mass of homogenous mixed moderator systems of ZrC and reactor-grade graphite are also sensitive to the ZrC TSL. Moreover, the effect of quantized energy exchange on the neutron spectra is found to influence the temperature feedback coefficient.