ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Jaeuk Im, Myung Jin Jeong, Namjae Choi, Kyung Min Kim, Hyoung Kyu Cho, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1743-1757
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2143209
Articles are hosted by Taylor and Francis Online.
A multiphysics analysis system for neutronics/thermomechanical/heat pipe thermal analysis of heat pipe–cooled micro reactors was developed using the PRAGMA code as the neutronics engine. PRAGMA, which was developed as a graphics processing unit (GPU)-based continuous-energy Monte Carlo code for power reactor applications, now has an extended geometry package to handle geometries with unstructured meshes generated by Coreform Cubit. The NVIDIA ray-tracing engine OptiX has been exploited for efficient neutron transport on unstructured mesh geometry. On the multiphysics side, the open-source computational fluid dynamics tool OpenFOAM and one-dimensional heat pipe analysis code ANLHTP have been adopted. The manager-worker system based on the message passing interface dynamic process management model enables efficient coupling of codes employing different parallelization schemes. With all the features, the multiphysics analysis of the 60-deg symmetrical sector model of the MegaPower three-dimensional core was performed for normal operation and heat pipe–failed conditions. The multiphysics coupling run time was about 2.5 h, in which the Monte Carlo simulation employing more than 10 billion histories was performed within half an hour on a single rack of computing nodes mounted with 24 NVIDIA Quadro GPUs. Accordingly, this demonstrates the soundness and robustness of the tightly coupled three-way multiphysics analysis system.