ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Jaeuk Im, Myung Jin Jeong, Namjae Choi, Kyung Min Kim, Hyoung Kyu Cho, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1743-1757
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2143209
Articles are hosted by Taylor and Francis Online.
A multiphysics analysis system for neutronics/thermomechanical/heat pipe thermal analysis of heat pipe–cooled micro reactors was developed using the PRAGMA code as the neutronics engine. PRAGMA, which was developed as a graphics processing unit (GPU)-based continuous-energy Monte Carlo code for power reactor applications, now has an extended geometry package to handle geometries with unstructured meshes generated by Coreform Cubit. The NVIDIA ray-tracing engine OptiX has been exploited for efficient neutron transport on unstructured mesh geometry. On the multiphysics side, the open-source computational fluid dynamics tool OpenFOAM and one-dimensional heat pipe analysis code ANLHTP have been adopted. The manager-worker system based on the message passing interface dynamic process management model enables efficient coupling of codes employing different parallelization schemes. With all the features, the multiphysics analysis of the 60-deg symmetrical sector model of the MegaPower three-dimensional core was performed for normal operation and heat pipe–failed conditions. The multiphysics coupling run time was about 2.5 h, in which the Monte Carlo simulation employing more than 10 billion histories was performed within half an hour on a single rack of computing nodes mounted with 24 NVIDIA Quadro GPUs. Accordingly, this demonstrates the soundness and robustness of the tightly coupled three-way multiphysics analysis system.