ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Jaeuk Im, Myung Jin Jeong, Namjae Choi, Kyung Min Kim, Hyoung Kyu Cho, Han Gyu Joo
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1743-1757
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2143209
Articles are hosted by Taylor and Francis Online.
A multiphysics analysis system for neutronics/thermomechanical/heat pipe thermal analysis of heat pipe–cooled micro reactors was developed using the PRAGMA code as the neutronics engine. PRAGMA, which was developed as a graphics processing unit (GPU)-based continuous-energy Monte Carlo code for power reactor applications, now has an extended geometry package to handle geometries with unstructured meshes generated by Coreform Cubit. The NVIDIA ray-tracing engine OptiX has been exploited for efficient neutron transport on unstructured mesh geometry. On the multiphysics side, the open-source computational fluid dynamics tool OpenFOAM and one-dimensional heat pipe analysis code ANLHTP have been adopted. The manager-worker system based on the message passing interface dynamic process management model enables efficient coupling of codes employing different parallelization schemes. With all the features, the multiphysics analysis of the 60-deg symmetrical sector model of the MegaPower three-dimensional core was performed for normal operation and heat pipe–failed conditions. The multiphysics coupling run time was about 2.5 h, in which the Monte Carlo simulation employing more than 10 billion histories was performed within half an hour on a single rack of computing nodes mounted with 24 NVIDIA Quadro GPUs. Accordingly, this demonstrates the soundness and robustness of the tightly coupled three-way multiphysics analysis system.