ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Moving past Sayre’s Law on low-dose radiation
Craig Piercycpiercy@ans.org
So, President Trump has just kicked the low-dose radiation hornets’ nest.
Specifically, his recently signed executive order “Ordering the Reform of the Nuclear Regulatory Commission” calls for the NRC to “reconsider reliance” on the linear no-threshold (LNT) theory and the ALARA (as low as reasonably achievable) standard for radiation protection.
This directive will certainly reignite a vociferous debate within the radiation research community over the continued efficacy of using LNT as the basis for protecting the public and the environment, a community that has been wracked with controversy on this matter for the last few years.
I must admit that whenever the low-dose issue comes up, my first thoughts always go to Sayre’s Law.
P. Cosgrove, E. Shwageraus, J. Leppänen
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1681-1699
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2106732
Articles are hosted by Taylor and Francis Online.
Inline algorithms have been proposed for coupling Monte Carlo neutron transport solvers with several other physics, such as xenon and iodine densities and thermal hydraulics. This paper proposes a new inline algorithm that can be applied to burnup calculations. The algorithm is a modification of the predictor-corrector method, where the corrector-step nuclide densities are converged simultaneously with the fission source. This could, in principle, obviate the need for two full neutronics solutions per time-step while still allowing the accuracy of predictor-corrector methods with improved stability. This paper describes the algorithm and demonstrates its stability properties through a Fourier analysis. Although not unconditionally stable, judicious use of batching and relaxation are shown to greatly improve the algorithm’s stability properties in realistic systems.