ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Satoshi Takeda, Takanori Kitada
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1621-1633
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2123679
Articles are hosted by Taylor and Francis Online.
Assuming that the discrepancy between the experimental value and the calculation value comes from the cross section, experimental error, and calculation error, Bayesian estimation of the cross section and these errors were studied. Uncertainty of the discrepancy between the experimental value and the design value is discussed by comparing the present estimation and the bias factor method. Comparison of the formulas shows that the design value obtained by the bias factor method is consistent with that obtained by estimation of the cross section and calculation error of the target system. In addition, the uncertainty of the discrepancy between the experimental value and the design value can be reduced by considering a correlation of the experimental error between the mock-up experiment and the target system. A case study was performed using mixed oxide critical assembly benchmarks. The result shows that the experimental value of the target system can be accurately predicted by considering the cross section, experimental error, and calculation error.