ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Satoshi Takeda, Takanori Kitada
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1621-1633
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2123679
Articles are hosted by Taylor and Francis Online.
Assuming that the discrepancy between the experimental value and the calculation value comes from the cross section, experimental error, and calculation error, Bayesian estimation of the cross section and these errors were studied. Uncertainty of the discrepancy between the experimental value and the design value is discussed by comparing the present estimation and the bias factor method. Comparison of the formulas shows that the design value obtained by the bias factor method is consistent with that obtained by estimation of the cross section and calculation error of the target system. In addition, the uncertainty of the discrepancy between the experimental value and the design value can be reduced by considering a correlation of the experimental error between the mock-up experiment and the target system. A case study was performed using mixed oxide critical assembly benchmarks. The result shows that the experimental value of the target system can be accurately predicted by considering the cross section, experimental error, and calculation error.