ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Peter J. Kowal, Camden E. Blake, Kurt A. Dominesey, Robert A. Lefebvre, Forrest B. Brown, Wei Ji
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1600-1620
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2153617
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are essential components of many reactor physics simulation workflows as high-fidelity continuous-energy neutron transport solvers. Among Monte Carlo radiation transport codes, MCNP is particularly notable due to its diverse simulation capabilities, large user base, and long validation history. Despite being a powerful simulation tool, MCNP provides limited capabilities to allow automated execution, model transformation, or support for user-defined logic and abstractions that limit its compatibility with modern workflows. To better integrate MCNP into a modern scientific workflow, we have developed an intuitive yet full-featured MCNP Application Program Interface (API) in Python, named MCNPy, which provides a specialized set of classes for MCNP input development. Moreover, to guarantee that our reading, writing, and modeling capabilities remain self-consistent (and to render the huge scope of the MCNP API manageable), we have adopted a strategy of model-driven software development in which a generalized model of the MCNP input format has been created. From this generalized model, or “metamodel,” problem-specific implementations such as an engine for input validation or a codebase for programmatic operations may be automatically generated. Since MCNPy primarily acts as a Python front-end to the underlying Java API that directly interfaces with the metamodel, it is intrinsically linked to the metamodel and thus remains maintainable. With MCNPy, users can programmatically read, write, and modify any syntactically valid MCNP input file regardless of its origin. These capabilities allow users to automate complicated tasks like design optimization and model translation for nuclear systems. As examples, this work demonstrates the use of MCNPy to find the critical radius of a plutonium sphere and to translate a 9000+ line MCNP input file into a corresponding OpenMC model.