ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Peter J. Kowal, Camden E. Blake, Kurt A. Dominesey, Robert A. Lefebvre, Forrest B. Brown, Wei Ji
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1600-1620
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2153617
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are essential components of many reactor physics simulation workflows as high-fidelity continuous-energy neutron transport solvers. Among Monte Carlo radiation transport codes, MCNP is particularly notable due to its diverse simulation capabilities, large user base, and long validation history. Despite being a powerful simulation tool, MCNP provides limited capabilities to allow automated execution, model transformation, or support for user-defined logic and abstractions that limit its compatibility with modern workflows. To better integrate MCNP into a modern scientific workflow, we have developed an intuitive yet full-featured MCNP Application Program Interface (API) in Python, named MCNPy, which provides a specialized set of classes for MCNP input development. Moreover, to guarantee that our reading, writing, and modeling capabilities remain self-consistent (and to render the huge scope of the MCNP API manageable), we have adopted a strategy of model-driven software development in which a generalized model of the MCNP input format has been created. From this generalized model, or “metamodel,” problem-specific implementations such as an engine for input validation or a codebase for programmatic operations may be automatically generated. Since MCNPy primarily acts as a Python front-end to the underlying Java API that directly interfaces with the metamodel, it is intrinsically linked to the metamodel and thus remains maintainable. With MCNPy, users can programmatically read, write, and modify any syntactically valid MCNP input file regardless of its origin. These capabilities allow users to automate complicated tasks like design optimization and model translation for nuclear systems. As examples, this work demonstrates the use of MCNPy to find the critical radius of a plutonium sphere and to translate a 9000+ line MCNP input file into a corresponding OpenMC model.