ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Kenneth Assogba, Lahbib Bourhrara, Igor Zmijarevic, Grégoire Allaire, Antonio Galia
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1584-1599
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2154546
Articles are hosted by Taylor and Francis Online.
The spherical harmonics or PN method is intended to approximate the neutron angular flux by a linear combination of spherical harmonics of degree at most . In this work, the PN method is combined with the discontinuous Galerkin (DG) finite elements method and yield to a full discretization of the multigroup neutron transport equation. The employed method is able to handle all geometries describing the fuel elements without any simplification nor homogenization. Moreover, the use of the matrix assembly-free method avoids building large sparse matrices, which enables producing high-order solutions in a small computational time and less storage usage. The resulting transport solver, called NYMO, has a wide range of applications; it can be used for a core calculation as well as for a precise 281-group lattice calculation accounting for anisotropic scattering. To assess the accuracy of this numerical scheme, it is applied to a three-dimensional (3-D) reactor core and fuel assembly calculations. These calculations point out that the proposed PN -DG method is capable of producing precise solutions, while the developed solver is able to handle complex 3-D core and assembly geometries.