ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
Kenneth Assogba, Lahbib Bourhrara, Igor Zmijarevic, Grégoire Allaire, Antonio Galia
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1584-1599
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2154546
Articles are hosted by Taylor and Francis Online.
The spherical harmonics or PN method is intended to approximate the neutron angular flux by a linear combination of spherical harmonics of degree at most . In this work, the PN method is combined with the discontinuous Galerkin (DG) finite elements method and yield to a full discretization of the multigroup neutron transport equation. The employed method is able to handle all geometries describing the fuel elements without any simplification nor homogenization. Moreover, the use of the matrix assembly-free method avoids building large sparse matrices, which enables producing high-order solutions in a small computational time and less storage usage. The resulting transport solver, called NYMO, has a wide range of applications; it can be used for a core calculation as well as for a precise 281-group lattice calculation accounting for anisotropic scattering. To assess the accuracy of this numerical scheme, it is applied to a three-dimensional (3-D) reactor core and fuel assembly calculations. These calculations point out that the proposed PN -DG method is capable of producing precise solutions, while the developed solver is able to handle complex 3-D core and assembly geometries.