ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Frederick Agyemang, Stephen Yamoah, Seth Kofi Debrah
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1479-1490
Technical Paper | doi.org/10.1080/00295639.2022.2132102
Articles are hosted by Taylor and Francis Online.
The effect of compensated feedwater (FW) pump control on a nuclear steam supply system with a significant reduction of baseload electricity demand as a common-cause failure could result in temperature elevation of the reactor coolant system and corresponding pressure increases in the pressurizer and steam generators above the set points. The shutting and opening of the pressure relief valve causes the fluid flow rate to transition from laminar to turbulence flow, where a sudden burst, chaotic movement, and inertial forces and weight of the fluid have the potential to cause a break in pipelines leading to a loss-of-coolant accident. This study employs the Fourier transform to simulate the impact of force as the power spectral density (in dBm/Hz) measured in 1 to 99 label harmonics over a specified time window using MATLAB/Simulink library tools. The experimental results show that compensated FW pump control could significantly reduce the effect of turbulence and reveal a perturbation settlement state prior to steady-state laminar flow.