ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Changhu Xing, Casey J. Jesse, Warren F. Jones, Maxine P. Johnson, Ann Marie Phillips, Theron D. Marshall
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1467-1478
Technical Paper | doi.org/10.1080/00295639.2022.2153599
Articles are hosted by Taylor and Francis Online.
Knowing the thickness of the oxide layer on the surface of aluminum fuel cladding is vitally important for predicting fuel temperature due to the low thermal conductivity of the oxide layer. Several correlation models for predicting oxide growth can be found in the literature. In previous research, the correlations were combined with heat transfer simulations in Abaqus, a finite element analysis code, to forecast the oxide growth. However, this approach requires heat transfer coefficients for modeling heat exchanges with the external flow field, and such coefficients were obtained through empirical equations. Since different empirical equations yield varying heat transfer coefficients, the cladding temperature and predicted oxide thickness both carry a high degree of uncertainty. This research develops a new approach that integrates the fluid flow, fluid and solid heat transfer, and oxide growth correlation(s) into a single computational fluid dynamics model. We demonstrate this approach’s ability to predict oxide development on the AFIP-7 plates during two Advanced Test Reactor (ATR) irradiation cycles. The projected oxide thickness falls within the experimental measurements taken during post irradiation examination.