ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NorthStar closes on Vallecitos D&D agreement
NorthStar Group Services has announced that it has closed on an agreement to acquire ownership of the Vallecitos Nuclear Center from GE Vernova and GE Hitachi Nuclear Energy for NorthStar's nuclear decontamination, decommissioning, and environmental site restoration.
Ben Whewell, Ryan G. McClarren, Cory D. Hauck, Minwoo Shin
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1386-1405
Technical Paper | doi.org/10.1080/00295639.2022.2154119
Articles are hosted by Taylor and Francis Online.
A collision-based hybrid algorithm for the discrete ordinates approximation of the neutron transport equation is extended to the isotropic multigroup setting. The algorithm uses discrete energy and angle grids at two different resolutions and approximates the fission and scattering sources on the coarser grids. The coupling of a collided transport equation, discretized on the coarse grid, with an uncollided transport equation, discretized on the fine grid, yields an algorithm that, in most cases, is more efficient than the traditional multigroup approach. The improvement over existing techniques is demonstrated for time-dependent problems with different materials, geometries, and energy groups.