ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Qicang Shen, Brendan Kochunas
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1364-1385
Technical Paper | doi.org/10.1080/00295639.2022.2159276
Articles are hosted by Taylor and Francis Online.
Solving initial value problems with high-order methods receives considerable attention in many fields because these methods can potentially improve the accuracy of the simulation results with lower computational cost than low-order methods. Most methods, however, are either complicated to implement or unstable when the order of accuracy is high. The spectral deferred correction (SDC) method is a stable, robust, and efficient high-order time-integration scheme capable of an arbitrary order of accuracy. In this paper, we apply the SDC method to solve the initial value problem of the point kinetics equations (PKEs). For our implementation, we show that SDC is -stable for orders up to eight and the order of accuracy is verified for PKE problems with a range of different reactivities. A fifth-order SDC method was then implemented to solve the exact PKE in the transient multilevel method of MPACT. The error from solutions of the exact PKE with SDC is shown to be negligible. The investigations made here can provide the foundation for future investigations simulating the neutron transport problem using the high-order methods for both spatial discretization and time integration.