ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. D. Tucker, D. R. Novog
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1305-1330
Technical Paper | doi.org/10.1080/00295639.2022.2160612
Articles are hosted by Taylor and Francis Online.
A subset of pressurized water reactor (PWR) studies from Exercise II-2 of the Uncertainty Analysis in Modeling for Light Water Reactors (UAM-LWR) benchmark study has been performed to quantify the importance of both nuclear data uncertainties and manufacturing uncertainties in an assembly depletion calculation and a mini-core rod movement transient. The depletion study of the 15 × 15 PWR assembly using the SAMPLER and TRITON modules of the SCALE code system revealed a maximum uncertainty in keff of 0.49% for fresh fuel, decreasing to 0.38% at the midpoint of the fuel cycle and rising back to 0.48% at the end of the fuel cycle. Uncertainties and correlations of various homogenized cross sections and other group constant data, such as keff, have been determined, and the effect of randomly applied manufacturing uncertainties was found to be largely negligible relative to nuclear data uncertainties for bulk lattice parameters. However, for local parameters, such as the pin power factors, assembly discontinuity factors, and diffusion coefficients, the effects from manufacturing uncertainties were appreciable and sometimes dominant.
Nuclear data uncertainties were found to be the dominant contributors to uncertainty in the isotopic composition of the overall assembly, with the exception of very early in the fuel cycle, where manufacturing uncertainties such as perturbations to the fuel density and pin radius made nonnegligible contributions to total uncertainty. The contribution of manufacturing uncertainties to isotopic uncertainties was nonnegligible at a pin-by-pin level, but still smaller than the contributions from nuclear data uncertainty. Studies of the PWR mini-core rod movement transient using homogenized data from the SCALE models in the PARCS diffusion code showed little difference between the tested modeling approaches and demonstrated that nuclear data uncertainties dominated the manufacturing uncertainties in the global figures of merit considered, such as the equilibrium core boron concentration, the maximum core power factor, and the maximum reactivity insertion. For local effects, such as maximum pin power during the transient, the randomly applied manufacturing uncertainties were dominant. It was found in general that for global system properties, nuclear data uncertainties made significantly larger contributions to total uncertainty, whereas for local parameters the impact of manufacturing uncertainties was at least nonnegligible, and for some parameters, dominant.