ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
M. D. Tucker, D. R. Novog
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1305-1330
Technical Paper | doi.org/10.1080/00295639.2022.2160612
Articles are hosted by Taylor and Francis Online.
A subset of pressurized water reactor (PWR) studies from Exercise II-2 of the Uncertainty Analysis in Modeling for Light Water Reactors (UAM-LWR) benchmark study has been performed to quantify the importance of both nuclear data uncertainties and manufacturing uncertainties in an assembly depletion calculation and a mini-core rod movement transient. The depletion study of the 15 × 15 PWR assembly using the SAMPLER and TRITON modules of the SCALE code system revealed a maximum uncertainty in keff of 0.49% for fresh fuel, decreasing to 0.38% at the midpoint of the fuel cycle and rising back to 0.48% at the end of the fuel cycle. Uncertainties and correlations of various homogenized cross sections and other group constant data, such as keff, have been determined, and the effect of randomly applied manufacturing uncertainties was found to be largely negligible relative to nuclear data uncertainties for bulk lattice parameters. However, for local parameters, such as the pin power factors, assembly discontinuity factors, and diffusion coefficients, the effects from manufacturing uncertainties were appreciable and sometimes dominant.
Nuclear data uncertainties were found to be the dominant contributors to uncertainty in the isotopic composition of the overall assembly, with the exception of very early in the fuel cycle, where manufacturing uncertainties such as perturbations to the fuel density and pin radius made nonnegligible contributions to total uncertainty. The contribution of manufacturing uncertainties to isotopic uncertainties was nonnegligible at a pin-by-pin level, but still smaller than the contributions from nuclear data uncertainty. Studies of the PWR mini-core rod movement transient using homogenized data from the SCALE models in the PARCS diffusion code showed little difference between the tested modeling approaches and demonstrated that nuclear data uncertainties dominated the manufacturing uncertainties in the global figures of merit considered, such as the equilibrium core boron concentration, the maximum core power factor, and the maximum reactivity insertion. For local effects, such as maximum pin power during the transient, the randomly applied manufacturing uncertainties were dominant. It was found in general that for global system properties, nuclear data uncertainties made significantly larger contributions to total uncertainty, whereas for local parameters the impact of manufacturing uncertainties was at least nonnegligible, and for some parameters, dominant.