ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sandia and Aeva evaluate intrusion detection system
Sandia National Laboratories is collaborating with the California-based Aeva Technologies, a developer of next-generation sensing and perception systems, on the development of technology for strengthening security at U.S. nuclear reactor sites.
H. Naik, R. J. Singh, S. P. Dange, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2022.2150029
Articles are hosted by Taylor and Francis Online.
In the epi-cadmium neutron-induced fission of 229Th, cumulative yields of relatively long-lived fission products within the mass range of 77 to 151 were measured by using an off-line gamma-ray spectrometric technique. The mass yields were obtained from the cumulative fission product yields by using charge distribution correction. The peak-to-valley (P/V) ratio, full-width at tenth-maximum of light and heavy mass wings, average light mass <AL> and heavy mass <AH>, and average neutron number <ν> were obtained. The P/V ratio was obtained for the first time and was found to be about three times lower in the epi-cadmium neutron fission than in the thermal neutron fission of 229Th, which shows the role of excitation energy. The fine structure of the mass yield distribution in the 229Th(nf,f) reaction was explained from the viewpoint of nuclear structure effect and the Standard I and Standard II asymmetric modes of fission.