ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
H. Naik, R. J. Singh, S. P. Dange, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2022.2150029
Articles are hosted by Taylor and Francis Online.
In the epi-cadmium neutron-induced fission of 229Th, cumulative yields of relatively long-lived fission products within the mass range of 77 to 151 were measured by using an off-line gamma-ray spectrometric technique. The mass yields were obtained from the cumulative fission product yields by using charge distribution correction. The peak-to-valley (P/V) ratio, full-width at tenth-maximum of light and heavy mass wings, average light mass <AL> and heavy mass <AH>, and average neutron number <ν> were obtained. The P/V ratio was obtained for the first time and was found to be about three times lower in the epi-cadmium neutron fission than in the thermal neutron fission of 229Th, which shows the role of excitation energy. The fine structure of the mass yield distribution in the 229Th(nf,f) reaction was explained from the viewpoint of nuclear structure effect and the Standard I and Standard II asymmetric modes of fission.