ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. Naik, R. J. Singh, S. P. Dange, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 7 | July 2023 | Pages 1265-1278
Technical Paper | doi.org/10.1080/00295639.2022.2150029
Articles are hosted by Taylor and Francis Online.
In the epi-cadmium neutron-induced fission of 229Th, cumulative yields of relatively long-lived fission products within the mass range of 77 to 151 were measured by using an off-line gamma-ray spectrometric technique. The mass yields were obtained from the cumulative fission product yields by using charge distribution correction. The peak-to-valley (P/V) ratio, full-width at tenth-maximum of light and heavy mass wings, average light mass <AL> and heavy mass <AH>, and average neutron number <ν> were obtained. The P/V ratio was obtained for the first time and was found to be about three times lower in the epi-cadmium neutron fission than in the thermal neutron fission of 229Th, which shows the role of excitation energy. The fine structure of the mass yield distribution in the 229Th(nf,f) reaction was explained from the viewpoint of nuclear structure effect and the Standard I and Standard II asymmetric modes of fission.