ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Brian Cohn, Todd Noel, Jeffrey Cardoni, Troy Haskin, Douglas Osborn, Tunc Aldemir
Nuclear Science and Engineering | Volume 197 | Number 1 | June 2023 | Pages S45-S56
Technical Paper | doi.org/10.1080/00295639.2023.2177076
Articles are hosted by Taylor and Francis Online.
Nuclear security relies on the method of vital area identification (VAI) to determine which locations within the nuclear power plant (NPP) need to be protected from radiological sabotage. The VAI methodology uses fault trees (FTs) and event trees (ETs) to identify locations in the NPP that contain vital equipment: structures and components that may result in reactor significant core damage if direct or indirect sabotage occurred. However, the traditional FT/ET process cannot fully capture the dynamics of NPP systems and mitigating measures at play. Existing safety systems or possible operator procedures may be able to avert or mitigate core damage despite the loss of one or more vital areas. Dynamic probabilistic risk assessment (DPRA) methodologies are those that, unlike traditional probabilistic risk assessment, explicitly consider time effects when modeling a system. One common DPRA methodology is that of the use of dynamic event trees (DETs) that drive computer models of a system with user-specified branching conditions to account for uncertainties in a scenario. The DPRA process allows analysts to explore the uncertainties and state space of a scenario in a systematic fashion. A scenario was developed that uses the novel leading simulator/trailing simulator methodology to perform a DET analysis of a combined nuclear safety and nuclear security analysis. The scenario under consideration models the successful sabotage of a vital area by adversaries and determines the effects of timing and the extent of sabotage, as well as possible recovery actions, on the state of the plant. The results of this integrated analysis include the timing and extent of core damage as well as the extent of any radiological release that may occur as a result of sabotage.