ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Zeyun Wu, Cihang Lu, Tao Liu
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1213-1238
Technical Paper | doi.org/10.1080/00295639.2022.2143207
Articles are hosted by Taylor and Francis Online.
The continuous adjoint method and the discrete adjoint method are two alternative approaches used to calculate adjoint solutions for adjoint systems. The continuous adjoint method derives adjoint equations analytically from continuous forward equations and then solves the adjoint equations either analytically or numerically in a discretized form whereas the discrete adjoint method calculates the adjoint solutions directly from the discretized forward equations. With regard to the methodology development and calculation procedure, distinct differences are well recognized between the two methods. For certain reasons, both methods are exclusively preferred and commonly used by different computational communities, but limited studies clarify the connections between the two adjoint methods from either of the communities.
This paper demonstrates the computational equivalence between the continuous and discrete adjoint methods by investigating time-dependent adjoint solutions to the two-group neutron diffusion model in nuclear reactor analysis problems using both methods. Adjoint solutions can be used to estimate system parameters for reactor safety analysis. Appropriate final state conditions for the adjoint systems are specified in both of the methods, and the conditions are clarified with proper physical explanations. With the help of an event-based case study on neutron diffusion models, the accuracy of the time-dependent adjoint fluxes obtained from both methods is verified, and the pros and cons of both adjoint methods are examined. More importantly, the computational equivalence of both methods is demonstrated when they are applied to multigroup neutron diffusion systems. The advantage of calculating time-dependent adjoint fluxes by directly solving time-dependent adjoint systems rather than taking steady-state approximations as in common practice is also demonstrated.