ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Kaijie Zhu, Boran Kong, Han Zhang, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1174-1196
Technical Paper | doi.org/10.1080/00295639.2022.2143706
Articles are hosted by Taylor and Francis Online.
Recently, a three-dimensional method of characteristics (MOC) code called Advanced Reactor CHaracteristics tracER (ARCHER) has been developed by the Institute of Nuclear and New Energy Technology, Tsinghua University, to solve the neutron transport problem in high-temperature gas-cooled reactors (HTRs) with explicit pebble-bed geometry. Although the spatial domain decomposition using the message passing interface (MPI) and the ray parallel using OpenMP have been implemented in the previous version of ARCHER, in order to simulate practical HTR problems it is still necessary to reduce the great computational burden through efficient algorithms. Therefore, the linear source approximation (LSA) scheme, which allows coarser transport calculation grids while maintaining high accuracy, has been added in the latest version of ARCHER to relieve memory pressure together with the MPI-based spatial domain decomposition. Moreover, on-the-fly calculation of the relative position coordinates of the ray segment center can further reduce the memory for storing segment information under LSA. In addition, time-consuming MOC transport sweeps can be reduced greatly with coarse-mesh finite difference (CMFD) acceleration. Numerical results show that both LSA and CMFD acceleration contribute to simulate the practical HTR-10 problem successfully.