ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sam Pasmann, Ilham Variansyah, C. T. Kelley, Ryan McClarren
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1159-1173
Technical Paper | doi.org/10.1080/00295639.2022.2143704
Articles are hosted by Taylor and Francis Online.
In this work we investigate replacing standard quadrature techniques used in deterministic linear solvers with a fixed-seed Quasi–Monte Carlo (QMC) calculation to obtain more accurate and efficient solutions to the neutron transport equation (NTE). QMC is the use of low-discrepancy sequences to sample the phase-space in place of pseudorandom number generators used by traditional Monte Carlo (MC). QMC techniques decrease the variance in the stochastic transport sweep and therefore increase the accuracy of the iterative method. Historically, QMC has largely been ignored by the particle transport community because it breaks the Markovian assumption needed to model scattering in analog MC particle simulations. However, by using iterative methods the NTE can be modeled as a pure-absorption problem. This removes the need to explicitly model particle scattering and provides an application well suited for QMC. To obtain solutions we experimented with three separate iterative solvers: the standard Source Iteration (SI) Solver and two linear Krylov Solvers, i.e., the Generalized Minimal RESidual method (GMRES) and the BiConjugate Gradient STABilized method (BiCGSTAB). The resulting hybrid iterative-QMC solver was assessed on three slab geometry problems of one dimension. In each sample problem the Krylov Solvers achieve convergence with far fewer iterations (up to eight times) than the SI Solver. Regardless of the linear solver used, the hybrid method achieved an approximate convergence rate of as compared to the expected of traditional MC simulation across all test problems.