ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Sam Pasmann, Ilham Variansyah, C. T. Kelley, Ryan McClarren
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1159-1173
Technical Paper | doi.org/10.1080/00295639.2022.2143704
Articles are hosted by Taylor and Francis Online.
In this work we investigate replacing standard quadrature techniques used in deterministic linear solvers with a fixed-seed Quasi–Monte Carlo (QMC) calculation to obtain more accurate and efficient solutions to the neutron transport equation (NTE). QMC is the use of low-discrepancy sequences to sample the phase-space in place of pseudorandom number generators used by traditional Monte Carlo (MC). QMC techniques decrease the variance in the stochastic transport sweep and therefore increase the accuracy of the iterative method. Historically, QMC has largely been ignored by the particle transport community because it breaks the Markovian assumption needed to model scattering in analog MC particle simulations. However, by using iterative methods the NTE can be modeled as a pure-absorption problem. This removes the need to explicitly model particle scattering and provides an application well suited for QMC. To obtain solutions we experimented with three separate iterative solvers: the standard Source Iteration (SI) Solver and two linear Krylov Solvers, i.e., the Generalized Minimal RESidual method (GMRES) and the BiConjugate Gradient STABilized method (BiCGSTAB). The resulting hybrid iterative-QMC solver was assessed on three slab geometry problems of one dimension. In each sample problem the Krylov Solvers achieve convergence with far fewer iterations (up to eight times) than the SI Solver. Regardless of the linear solver used, the hybrid method achieved an approximate convergence rate of as compared to the expected of traditional MC simulation across all test problems.