ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1133-1158
Technical Paper | doi.org/10.1080/00295639.2022.2142433
Articles are hosted by Taylor and Francis Online.
In the thermal neutron–induced fission of 233U, the cumulative and independent yields of various fission products within the mass ranges of 77 to 109 and 123 to 155 have been measured by using an off-line gamma-ray spectrometric technique. The lower yields of 86Br and 136I than usual trend indicate the formation of delayed neutron emitters 87Br and 137I. From the cumulative yields, the post-neutron mass yield distribution was obtained after applying the charge distribution correction. The data from the present and earlier work of our laboratory in the 233U(nth,f) reaction were compared with similar data of 232,235U(nth,f) and 238U(n,f) reactions to examine the effect of mass difference of the fissioning systems on the fine structure of the mass yield distribution. The mass yield distribution in the 233U(nth,f) reaction was also compared with those of 229Th(nth,f), 241Pu(nth,f), and 245Cm(nth,f) reactions to examine the effect of charge and mass difference of the fissioning systems and also to examine the different behaviors of standard I and standard II asymmetric modes of fission.