ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1133-1158
Technical Paper | doi.org/10.1080/00295639.2022.2142433
Articles are hosted by Taylor and Francis Online.
In the thermal neutron–induced fission of 233U, the cumulative and independent yields of various fission products within the mass ranges of 77 to 109 and 123 to 155 have been measured by using an off-line gamma-ray spectrometric technique. The lower yields of 86Br and 136I than usual trend indicate the formation of delayed neutron emitters 87Br and 137I. From the cumulative yields, the post-neutron mass yield distribution was obtained after applying the charge distribution correction. The data from the present and earlier work of our laboratory in the 233U(nth,f) reaction were compared with similar data of 232,235U(nth,f) and 238U(n,f) reactions to examine the effect of mass difference of the fissioning systems on the fine structure of the mass yield distribution. The mass yield distribution in the 233U(nth,f) reaction was also compared with those of 229Th(nth,f), 241Pu(nth,f), and 245Cm(nth,f) reactions to examine the effect of charge and mass difference of the fissioning systems and also to examine the different behaviors of standard I and standard II asymmetric modes of fission.