ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Sachin Tom, P. Mangarjuna Rao, B. Venkatraman, S. Raghupathy
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1038-1070
Technical Paper | doi.org/10.1080/00295639.2022.2133948
Articles are hosted by Taylor and Francis Online.
In the present study, a Eulerian-Eulerian two-fluid model is developed to analyze the flow boiling phenomena under near-atmospheric pressure conditions. The required constitutive correlations for the two-fluid model are provided as flow regime dependent within the algebraic interfacial area density framework. The two-fluid model developed with Rensselaer Polytechnic Institute (RPI) wall heat flux partitioning is used to analyze the subcooled nucleate boiling of water at low pressure in three vertical annulus channels of different heated lengths over a wide range of inlet mass flux, wall heat flux, and inlet subcooling conditions.
The subcooled water enters the heated annulus channel from the bottom end and is heated to near-saturation temperature. Upon reaching the saturation temperature, the wall boiling generates dispersed vapor bubbles near the heated wall. Farther along the heated length, larger bubbles can be formed by coalescence and evaporation, and the bubbles move on to the channel core region with increased vapor fraction so the flow regime changes from bubbly to transition regime. Farther along, it may turn to an annular flow regime. The benchmark experimental cases chosen are used to validate the model capability in predicting the bubbly flow and transition flow regime (slug flow regime) characteristics with the proposed methodology. Further, the low-pressure boiling model developed is successfully extended to predict the liquid sodium boiling in flow channels similar to sodium-cooled fast reactor fuel subchannels using suitable interfacial correlations.