ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
Sachin Tom, P. Mangarjuna Rao, B. Venkatraman, S. Raghupathy
Nuclear Science and Engineering | Volume 197 | Number 6 | June 2023 | Pages 1038-1070
Technical Paper | doi.org/10.1080/00295639.2022.2133948
Articles are hosted by Taylor and Francis Online.
In the present study, a Eulerian-Eulerian two-fluid model is developed to analyze the flow boiling phenomena under near-atmospheric pressure conditions. The required constitutive correlations for the two-fluid model are provided as flow regime dependent within the algebraic interfacial area density framework. The two-fluid model developed with Rensselaer Polytechnic Institute (RPI) wall heat flux partitioning is used to analyze the subcooled nucleate boiling of water at low pressure in three vertical annulus channels of different heated lengths over a wide range of inlet mass flux, wall heat flux, and inlet subcooling conditions.
The subcooled water enters the heated annulus channel from the bottom end and is heated to near-saturation temperature. Upon reaching the saturation temperature, the wall boiling generates dispersed vapor bubbles near the heated wall. Farther along the heated length, larger bubbles can be formed by coalescence and evaporation, and the bubbles move on to the channel core region with increased vapor fraction so the flow regime changes from bubbly to transition regime. Farther along, it may turn to an annular flow regime. The benchmark experimental cases chosen are used to validate the model capability in predicting the bubbly flow and transition flow regime (slug flow regime) characteristics with the proposed methodology. Further, the low-pressure boiling model developed is successfully extended to predict the liquid sodium boiling in flow channels similar to sodium-cooled fast reactor fuel subchannels using suitable interfacial correlations.