ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC announces hearing opportunity on Long Mott construction permit
The Nuclear Regulatory Commission is providing the opportunity to request a hearing on Dow Chemical Company’s application to construct a 320-MWe nuclear power plant at the company’s Seadrift site in Calhoun, Texas. Long Mott Energy, a wholly owned subsidiary of the Dow Chemical Company, submitted its construction permit application to the NRC in March. It was accepted for review by the agency on May 12.
F. D’Auria
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 987-999
Technical Paper | doi.org/10.1080/00295639.2023.2178874
Articles are hosted by Taylor and Francis Online.
The development of the AP-1000 design and of its precursor the AP-600 started in the aftermath of the Chernobyl event (1986) when the need came from the scientific and technological community for a resilient system against deliberate threats by humans. The “passive system” design concept became relevant. The first AP-1000 entered into operation around 3 decades after that event. This paper discusses the issue of how much the progress in nuclear science and technology since the end of the 1980s has affected the AP-1000 design. Five interconnected areas are identified: (1) reliability of passive systems, (2) scaling and uncertainty, (3) coupling between three-dimensional neutron physics and thermal hydraulics, (4) consideration of large-break loss-of-coolant accidents, and (5) simulation of instrumentation and control systems. All these areas are relevant for the AP-1000 and standard pressurized water reactors; however, the areas (1) and (2) have specific applicability for the AP-1000 and constitute the main concerns of this paper. The conclusion from qualitative investigation is that the safety demonstration of the AP-1000 did not take full benefit from progress in these areas, namely, inadequacies characterize the scaling database and the processes for determining the reliability of thermal-hydraulic passive systems did not receive proper attention.