ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State legislation: Illinois bill aims to lift state’s remaining nuclear moratorium
A bill that would fully repeal the state’s entire moratorium on new nuclear projects survived a key deadline in the Illinois General Assembly last week.
To stay afloat in the spring legislative session, bills needed to be assigned to committee by March 21, and state Sen. Sue Rezin’s Senate Bill 1527 now sits with the Senate’s Energy and Public Utilities committee for review.
Yue Jin, Stephen M. Bajorek, Fan-Bill Cheung
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 967-986
Technical Paper | doi.org/10.1080/00295639.2022.2087834
Articles are hosted by Taylor and Francis Online.
The accurate prediction of the fluid flow mass and the heat transfer process as well as the system response during reflood transients has long been a critical and challenging issue for reactor system safety analyses. Accurate characterization of the flow and energy transport can also significantly facilitate the various system/component design and optimization tasks. In the current study based on the U.S. Nuclear Regulatory Commission/Pennsylvania State University Rod Bundle Heat Transfer (RBHT) reflood experimental data, a comprehensive uncertainty analysis framework is developed using DAKOTA. The developed framework is used to perform an in-depth reflood model validation and verification for the subchannel analysis code COBRA-TF. In the meantime, the artificial intelligence (AI)–based machine learning (ML) model for rod cladding temperature prediction during reflood is also developed and evaluated using the current framework. Key input parametric effects for reflood thermal-hydraulic prediction include the system pressure, inlet liquid temperature/enthalpy, inlet mass flow rate, and average bundle power input. The figure of merit under consideration is the peak cladding temperature variations. It is found in the current study that, while further model improvement is needed, COBRA-TF can predict the correct parametric trends when compared with the RBHT data. On the other hand, it is challenging for the pure AI-based ML models to correctly reflect the parametric trends. Suggestions for future ML model development are provided in the end.