ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Industry Update—November 2025
Here is a recap of recent industry happenings:
TerraPower’s Natrium plans for Wyoming, Utah move forward
TerraPower has reported a number of developments related to its Natrium sodium fast reactor project. In the project’s fifth round of procurement awards, the company awarded three supplier contracts to support the Natrium plant’s construction, which is underway in Kemmerer, Wyo., and is expected to be completed in 2030. AvanTech will design advanced sodium processing system modules and supporting skids for the Natrium plant, as well as fabricate and deliver the test and fill facility cold trap skid. Structural Integrity Associates will design and fabricate the sodium cover gas gamma spectroscopy analysis cabinet, a radiation monitoring system. PAR Systems will design and fabricate the pool handling machine, a specialized crane system for spent fuel pool operations.
Yue Jin, Stephen M. Bajorek, Fan-Bill Cheung
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 967-986
Technical Paper | doi.org/10.1080/00295639.2022.2087834
Articles are hosted by Taylor and Francis Online.
The accurate prediction of the fluid flow mass and the heat transfer process as well as the system response during reflood transients has long been a critical and challenging issue for reactor system safety analyses. Accurate characterization of the flow and energy transport can also significantly facilitate the various system/component design and optimization tasks. In the current study based on the U.S. Nuclear Regulatory Commission/Pennsylvania State University Rod Bundle Heat Transfer (RBHT) reflood experimental data, a comprehensive uncertainty analysis framework is developed using DAKOTA. The developed framework is used to perform an in-depth reflood model validation and verification for the subchannel analysis code COBRA-TF. In the meantime, the artificial intelligence (AI)–based machine learning (ML) model for rod cladding temperature prediction during reflood is also developed and evaluated using the current framework. Key input parametric effects for reflood thermal-hydraulic prediction include the system pressure, inlet liquid temperature/enthalpy, inlet mass flow rate, and average bundle power input. The figure of merit under consideration is the peak cladding temperature variations. It is found in the current study that, while further model improvement is needed, COBRA-TF can predict the correct parametric trends when compared with the RBHT data. On the other hand, it is challenging for the pure AI-based ML models to correctly reflect the parametric trends. Suggestions for future ML model development are provided in the end.