ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Yuqi Liu, Shuai Che, Adam Burak, Daniel L. Barth, Nicolas Zweibaum, Minghui Chen
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 907-919
Technical Paper | doi.org/10.1080/00295639.2022.2103343
Articles are hosted by Taylor and Francis Online.
Fluoride salt-cooled, High-temperature Reactors (FHRs), featuring particle fuel, graphite moderator, and molten fluoride salt coolant, are used for electricity generation and process heat applications. The primary loop of an FHR is a closed loop that operates slightly above the atmospheric pressure with the fluoride salt temperature over 600°C. Reliable high-temperature molten salt pumps are critical to the successful deployment of FHRs. To stabilize rotating shafts and reduce the associated friction coefficients, well-designed bearings are required for molten salt pumps. Therefore, it is necessary to investigate the detailed hydrodynamic performance of bearings under high-temperature molten salt conditions. In this study, a computational fluid dynamics software package, i.e., STAR-CCM+, was used to predict the performance of fluoride salt–lubricated bearings. The numerical models were verified and validated respectively based on an analytical solution derived from the Reynolds equation and experimental data published in the literature. Good agreement was observed between the simulation results and the analytical solution and experimental data with a maximum relative discrepancy of less than 5%. The validated numerical model was then employed to predict the pressure distributions, applied static loads, and power losses of high-temperature fluoride salt–lubricated bearings with various Sommerfeld numbers. In addition, a parametric analysis was performed to investigate the influence of the axial and helical grooves of bearings on applied static load and power loss. It is found that under the same salt lubrication conditions, the bearings with helical grooves and axial grooves respectively yield 20% off and 14% off power loss compared with the bearing without grooves.