ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Yeongshin Jeong, Koroush Shirvan, Michael Buric
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 868-885
Technical Paper | doi.org/10.1080/00295639.2022.2102388
Articles are hosted by Taylor and Francis Online.
This work establishes a generic multiphysics tool for liquid-fueled molten salt reactors (LFMSRs) to select key installation locations and specify the expected operating temperature range for the development of advanced instrumentation and control systems, particularly distributed temperature sensors using fiber optics. A commercial computation fluid dynamics package (STAR-CCM+) is used to formulate a neutronics and thermal-hydraulic coupled solver, showing good agreement with a recent benchmark problem developed for evaluating the coupling methodology of neutronics and thermal hydraulics. The multiphysics model is then applied to the reference molten chloride salt fast reactor (MCFR) design under development by TerraPower based on publicly available information. The available two-dimensional axisymmetric model for the reactor core is used for coupling calculations, and system component details are leveraged using the lumped method to complete the energy balance. The dynamic responses of the MCFR model are investigated during operational transients, such as unprotected loss-of-flow and uniform perturbation scenarios. Maximum temperature and local temperature distributions are characterized during unprotected loss of flow and unprotected loss of heat sink events. The thermal responses of the fuel salt and core components are analyzed from induced perturbation of the system parameters, such as the flow rate and the heat sink capacity. The results motivate the use of continuous monitoring of the temperature variation in real time along the reflector region with the use of fiber optics to validate the multiphysics code to support a reactor’s licensing basis, as well as to support the structural longevity and improve safety in LFMSRs.