ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Haihua Zhao, Lambert Fick, Alexander Heald, Quan Zhou, Samuel Richesson, Noah Sutton, Brandon Haugh
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 813-839
Technical Paper | doi.org/10.1080/00295639.2022.2106724
Articles are hosted by Taylor and Francis Online.
To meet the Kairos Power (KP) Fluoride Salt-Cooled High-Temperature Reactor (FHR) (KP-FHR) development and commercialization schedules, the System Analysis Module (SAM), which is an advanced systems code for Generation IV liquid-cooled reactors developed at Argonne National Laboratory (ANL), has been selected as the basis for the development of the KP-FHR systems code KP-SAM. This allows for an accelerated joint development effort between the KP and ANL teams. This paper presents a general overview of the KP-SAM development process, its current status, completed verification, and ongoing validation efforts. KP-SAM development follows the U.S. Nuclear Regulatory Commission Evaluation Model Development and Assessment Process framework. SAM is a high-order fully implicit transient systems code written in C++. The SAM software design, major physical models, and Jacobian Free Newton Krylov–based numerical methods are briefly discussed. KP-SAM has matured enough to be used for the unvalidated demonstration safety analysis for the low-power KP-FHR test reactor (Hermes) as part of Preliminary Safety Analysis Report work. By following the guidance of an internal KP-FHR thermal fluid Phenomena Identification and Ranking Table report, some of the most important separate-effects-test validations were completed for the first iteration. A scaled integral-effects test is under detailed design and will be built in 2022 to provide key data to validate KP-SAM for licensing safety analysis.