ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
Zhengting Quan, Adam Dix, Ran Kong, Seungjin Kim, Mamoru Ishii, Mitchell T. Farmer
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 771-787
Technical Paper | doi.org/10.1080/00295639.2022.2082232
Articles are hosted by Taylor and Francis Online.
This work studies the hydrodynamics of the seven-pin wire-wrapped rod bundle in the sodium cartridge loop for the Versatile Test Reactor (VTR) through scaled water experiments and computational fluid dynamics (CFD) simulations. The scaling analysis is first performed to demonstrate the hydrodynamic similarity between water and sodium flows at the same Reynolds number . A separate-effects test facility is designed and constructed based on the scaling analysis. Detailed experimental data on the pressure drop covering a wide range of values (1165 to 27 689) are obtained, which are used to evaluate existing correlations for friction factor and to benchmark CFD simulations. The experimentally determined friction factors agree well with the Upgraded Cheng and Todreas Detailed Correlation and Pacio-Chen-Todreas Detailed Model within but are significantly underpredicted by Rehme’s correlation by 25%. Various CFD near-wall treatment methods are tested using ANSYS Fluent and evaluated by experimental data. It is found that when the recommended wall values are met, most of the near-wall treatment methods can give accurate friction factor predictions. The resolved near-wall method () with the Shear Stress Transport turbulence model and the scalable wall functions () with the realizable turbulence model can predict within . The standard wall functions () and nonequilibrium wall functions () with the realizable model can predict within ± 10%.