ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Zhengting Quan, Adam Dix, Ran Kong, Seungjin Kim, Mamoru Ishii, Mitchell T. Farmer
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 771-787
Technical Paper | doi.org/10.1080/00295639.2022.2082232
Articles are hosted by Taylor and Francis Online.
This work studies the hydrodynamics of the seven-pin wire-wrapped rod bundle in the sodium cartridge loop for the Versatile Test Reactor (VTR) through scaled water experiments and computational fluid dynamics (CFD) simulations. The scaling analysis is first performed to demonstrate the hydrodynamic similarity between water and sodium flows at the same Reynolds number . A separate-effects test facility is designed and constructed based on the scaling analysis. Detailed experimental data on the pressure drop covering a wide range of values (1165 to 27 689) are obtained, which are used to evaluate existing correlations for friction factor and to benchmark CFD simulations. The experimentally determined friction factors agree well with the Upgraded Cheng and Todreas Detailed Correlation and Pacio-Chen-Todreas Detailed Model within but are significantly underpredicted by Rehme’s correlation by 25%. Various CFD near-wall treatment methods are tested using ANSYS Fluent and evaluated by experimental data. It is found that when the recommended wall values are met, most of the near-wall treatment methods can give accurate friction factor predictions. The resolved near-wall method () with the Shear Stress Transport turbulence model and the scalable wall functions () with the realizable turbulence model can predict within . The standard wall functions () and nonequilibrium wall functions () with the realizable model can predict within ± 10%.