ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Ilyas Yilgor, Eymon Lan, Shanbin Shi
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 753-770
Technical Paper | doi.org/10.1080/00295639.2022.2087835
Articles are hosted by Taylor and Francis Online.
Interest in heat pipe microreactors (HPMRs) has recently grown due to several unique advantages compared with other reactor types. These compact and mobile reactors are expected to find applications in a variety of fields to provide carbon-free power in remote or off-grid locations. Experimental work is needed to aid and expedite the design and licensing of future HPMRs, especially on the validation of heat pipe performance as key heat transfer components. A Low-Temperature Heat Pipe Test Facility (LTHPF) was designed and constructed according to previously developed scaling laws to bypass the difficulties of experimenting with liquid-metal working fluids by using surrogate fluids. The design, instrumentation, and experimental capabilities of the facility are described. The testing conditions, including various operating limits and the ranges of the nondimensional parameters used for scaling analysis, are reported. It is found that certain nondimensional parameters could yield a wide range over the operating conditions, whereas some showed minimal variation when water was used as the working fluid. Last, the performance of several types of wicks, including the annulus-screen, groove-screen, and wrapped-screen designs, were investigated for applications in the LTHPF. It is observed that the groove-screen wick structure provided slight improvement in capillary limits at higher temperatures and that the wrapped-screen wick yielded lower capillary limits due to the absence of a low-resistance flow path for the liquid.