ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Ilyas Yilgor, Eymon Lan, Shanbin Shi
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 753-770
Technical Paper | doi.org/10.1080/00295639.2022.2087835
Articles are hosted by Taylor and Francis Online.
Interest in heat pipe microreactors (HPMRs) has recently grown due to several unique advantages compared with other reactor types. These compact and mobile reactors are expected to find applications in a variety of fields to provide carbon-free power in remote or off-grid locations. Experimental work is needed to aid and expedite the design and licensing of future HPMRs, especially on the validation of heat pipe performance as key heat transfer components. A Low-Temperature Heat Pipe Test Facility (LTHPF) was designed and constructed according to previously developed scaling laws to bypass the difficulties of experimenting with liquid-metal working fluids by using surrogate fluids. The design, instrumentation, and experimental capabilities of the facility are described. The testing conditions, including various operating limits and the ranges of the nondimensional parameters used for scaling analysis, are reported. It is found that certain nondimensional parameters could yield a wide range over the operating conditions, whereas some showed minimal variation when water was used as the working fluid. Last, the performance of several types of wicks, including the annulus-screen, groove-screen, and wrapped-screen designs, were investigated for applications in the LTHPF. It is observed that the groove-screen wick structure provided slight improvement in capillary limits at higher temperatures and that the wrapped-screen wick yielded lower capillary limits due to the absence of a low-resistance flow path for the liquid.