ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Lance Davis, Ralph Hania, Dennis Boomstra, Dillon Rossouw, Florence Charpin-Jacobs, Jan Uhlir, Martin Maracek, Helmut Beckers, Sebastian Riedel
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 633-646
Technical Paper | doi.org/10.1080/00295639.2022.2129951
Articles are hosted by Taylor and Francis Online.
Radiolytic fluorine gas production at temperatures of 40°C to 60°C was investigated for the fluoride salts LiF, BeF2, UF4, ThF4, and 71.7LiF-16BeF2-12.3UF4 (FliBe-UF4) by gamma irradiation of powdered samples using spent fuel elements from the High Flux Reactor (HFR) Petten as the irradiation source; work of a similar nature was previously performed at Oak Ridge National Laboratory in the period 1965 to 1995. Gamma irradiation was conducted for just over 41 days, with total absorbed gamma dose ranging from ~45 MGy for the lightest salts to ~170 MGy for ThF4 and UF4. By measuring the gas pressure within salt-filled capsules during irradiation, it was possible to quantify radiolytic gas production for all salt samples except UF4. Production rates are reported as the salt G-values, measured as number of fluorine molecules produced per 100 eV of energy absorbed (molecules F2/100 eV). The G-values of the salts were found to be G(LiF) ~0.004, G(BeF2) ~0.009, G(ThF4) ~0.021, and G(FLiBe-UF4) ~0.005.