ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Shuangbao Shu, Ziqiao Yu, Jiaxin Zhang, Zhiqiang Chen, Huajun Liang, Jingjing Chen
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 589-600
Technical Paper | doi.org/10.1080/00295639.2022.2132101
Articles are hosted by Taylor and Francis Online.
Baseline drift and noise can blur or even drown out a signal and affect analysis results, especially in multivariate analysis. To address the problem of spectrum denoising and baseline correction, this paper proposes an improved dual asymmetric penalized least squares (IDAPLS) baseline correction method. The proposed method first changes the single parameter λ used for balancing fidelity and roughness in the traditional penalty least squares (PLS) method into a new diagonal matrix Λ and uses the fast convergent inverse tangent S-type penalty function to iteratively estimate the noise level. Then, the diagonal matrix Ψ is introduced into the fidelity of the updated energy spectrum, and the element ψi is updated iteratively by using the inverse tangent S-type penalty function. Finally, the baseline of the original signal is obtained when a preset number of iterations or termination criteria are reached. Compared with other methods, IDAPLS solves the problem of underfitted curves when dealing with additive noise that the asymmetric least squares method and adaptive iterative reweighted penalized least squares method would get. The proposed method also retains the advantage of fast PLS and realizes the further approximation of the fitting baseline to the real baseline. Especially, in the case of high noise, this method reduces the error of the traditional PLS method from 30% to less than 5%, which gives a useful reference for nuclear data analysis.