ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Anthony P. Barbu, Marvin L. Adams
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 517-533
Technical Paper | doi.org/10.1080/00295639.2022.2123205
Articles are hosted by Taylor and Francis Online.
Most methods that use low-order operators to accelerate the iterative solution of transport eigenvalue problems employ nonlinear functionals of the transport solution (such as Eddington tensors) in their low-order equations, which are themselves standard eigenvalue problems. Here, we discuss linear diffusion synthetic acceleration (DSA) for -eigenvalue problems, which belongs to a family of methods that has received less attention than its nonlinear counterparts. We review the history of these linear methods as far as we know it and describe theoretical questions that to our knowledge have remained unanswered. With these methods, a low-order problem is solved after each transport step for an updated eigenvalue and an additive correction to the eigenfunction. These low-order problems are not standard eigenvalue problems, for they contain residuals as fixed sources. The low-order problems admit infinitely many solutions (updated and additive correction to the eigenfunction), and the solution that is obtained depends on the initial guess and iterative method chosen for the low-order problems. Experience has shown that when the low-order problems are solved with a powerlike iteration method and certain initial guesses, they yield solutions that cause rapid convergence to the correct high-order solution. We study the convergence properties of this algorithm applied to two model problems: an infinite homogeneous medium and a one-cell problem. For the infinite homogeneous problem, we present a Fourier analysis of the linear DSA method, which demonstrates that when the low-order problems are solved using a powerlike iteration scheme, the linear DSA scheme provides immediate convergence of the -eigenvalue and rapid convergence of the eigenfunction (much like DSA applied to scattering iterations in fixed-source problems). For the one-cell problems, we find that the linear scheme for -eigenvalue problems performs approximately as well as DSA for fixed-source problems. The latter analysis reveals a quantitative bound on the consistency between low- and high-order operators that is necessary and sufficient for convergence of those problems. With some theoretical foundations for the linear methods now established, we turn to numerical testing. We find, as others have before us using different low-order operators, that the method works well in practice. We provide numerical results from reactor problems in which our linear DSA is approximately as effective as the more widely used nonlinear methods. Our theoretical and numerical results add to the body of evidence that the linear methodology offers a simple path to rapid convergence of -eigenvalue problems, especially for codes that already employ linear low-order operators to converge scattering iterations.