ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
K. Brandenburg, G. Hamad, Z. Meisel, C. R. Brune, D. E. Carter, J. Derkin, D. C. Ingram, Y. Jones-Alberty, B. Kenady, T. N. Massey, M. Saxena, D. Soltesz, S. K. Subedi, J. Warren
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 510-516
Technical Paper | doi.org/10.1080/00295639.2022.2118483
Articles are hosted by Taylor and Francis Online.
We present results from direct measurements of the thick-target yield from laboratory incident energies 3 to 5 MeV, performed with the 3HeBF3 Giant Barrel (HeBGB) neutron detector at the Edwards Accelerator Laboratory. Our measurements have a small energy cadence in order to address discrepancies and sparseness of thick-target-yield data sets existing for this energy region. We find general agreement with existing data sets, including yields derived from cross-section data, while resolving a discrepancy between existing thick-target-yield data sets for MeV. However, for MeV, our results are substantially lower than previous thick-target-yield data and somewhat larger than yields calculated from existing cross-section data. Our data complete the energy range needed for estimates of the contribution to neutrino and dark matter detector backgrounds and result in increased viability of as a plasma diagnostic tool at fusion facilities such as the National Ignition Facility.