ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
H. Naik, S. P. Dange, R. J. Singh, W. Jang
Nuclear Science and Engineering | Volume 197 | Number 4 | April 2023 | Pages 485-509
Technical Paper | doi.org/10.1080/00295639.2022.2133947
Articles are hosted by Taylor and Francis Online.
The cumulative and independent yields of various fission products within the mass ranges of 78 to 108 and 123 to 155 have been measured in the thermal neutron–induced fission of 235U by using an off-line gamma-ray spectrometric technique. The post-neutron mass yield distribution was obtained from the cumulative yields after applying the charge distribution correction. The data from present and earlier work of our laboratory in the 235U(nth,f) reaction were compared with similar data of 229Th(nth,f), 245Cm(nth,f), and 252Cf(SF) reactions to examine the fine structure in the mass yield distribution for four different even-even fissioning systems with charge of 90 to 98. The comparison shows that the fine structure in the mass yield distribution depends on spherical and deformed neutron shell combinations. The shell combination favors the standard I asymmetric mode of fission in the 235U(nth,f) and 245Cm(nth,f) reactions, whereas it favors the standard II asymmetric mode of fission in the 229Th(nth,f) and 252Cf(SF) reactions.