ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear materials testing project brings U.S. and U.K. expertise together
As nations look to nuclear energy as a source of reliable electricity and heat, researchers and industry are developing a new generation of nuclear reactors to fill the need. These advanced nuclear reactors will provide safe, efficient, and economical power that go beyond what the current large light water reactors can do.
But before large-scale deployment of advanced reactors, researchers need to understand and test the safety and performance of the technologies—especially the coolants and materials—that make them possible.
Now, the United States and the United Kingdom have teamed up to test hundreds of advanced nuclear materials.
Zhipeng Feng, Fenggang Zang, Shuai Liu, Huanhuan Qi, Xuan Huang
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 428-442
Technical Paper | doi.org/10.1080/00295639.2022.2118478
Articles are hosted by Taylor and Francis Online.
To further investigate fluid-structure–interaction problems that occur in the nuclear field such as the behavior of pressurized water reactor fuel rods, steam generator tubes, and other heat exchanger tubes, the flow-induced vibrations of two flexible tubes in tandem, side-by-side, and in staggered arrangements are investigated. First, a three-dimensional numerical model for fluid-structure interaction of flexible tubes in cross flow is developed. It is a three-dimensional fully coupled approach with solving the fluid flow and the structure vibration simultaneously. Second, results are presented in the form of force coefficients, dynamic response, trajectories, and wake vortex pattern. The effects of pitch ratio, tube arrangement, and flow velocity on the vibration response and the flow field characteristic are investigated. Critical pitch and critical velocity are obtained successfully. The critical velocity depends heavily on pitch ratio. Under the same pitch ratio and velocity, the side-by-side tubes have the maximum value of fluid force and vibration amplitude, followed by the staggered tubes the and tandem tubes in sequence. The trajectory and wake vortex pattern are highly dependent on tube arrangement, pitch ratio, and flow velocity.