ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Tao Liu, Yuan Zhou, Mingjun Zhong, Houjun Gong
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 398-412
Technical Paper | doi.org/10.1080/00295639.2022.2116379
Articles are hosted by Taylor and Francis Online.
In a reactor severe accident, molten jet breakup and solidification are important behaviors after large pours of molten material fall into the coolant in-vessel or ex-vessel. However, heat and mass transfer processes inside melt during jet breakup have not been studied sufficiently. Existing research on jet fragmentation is relatively macroscopic, and the micro interface condensation details are not well studied. In this paper, a two-dimensional multiphase computational fluid dynamics (CFD) code with the Volume of Fluid (VOF) method and solidification model is applied to simulate molten jet breakup with surface solidification. The VOF model is used to capture the interface, study the details, and add the influence of solidification. Solidification and instability can be seen at the interface. In order to simulate melt solidification, an energy equation is modeled using an enthalpy-based formulation, and viscosity variation during phase change is taken into account. The comparative results between the CFD code and jet breakup experiments show that melt jet front position histories, breakup length, and breakup time are in good agreement with the experiments. The simulation results show that crust formation of the jet surface suppresses surface instability and jet breakup behavior. As the interfacial temperature decreases, the droplet cumulative mass fraction decreases, and the solidified metal proportion increases. The simulation results by the CFD code with the solidification model are valuable and important for understanding the molten jet breakup mechanism.