ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Miriam A. Kreher, Samuel Shaner, Benoit Forget, Kord Smith
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 279-290
Technical Paper | doi.org/10.1080/00295639.2022.2067739
Articles are hosted by Taylor and Francis Online.
The Frequency Transform method is used for the first time to efficiently model a multiple-second transient problem with Monte Carlo (MC). This is achieved by coupling MC with a time-dependent coarse mesh finite difference (TD-CMFD) diffusion solver. TD-CMFD presents a large advantage over commonly used point kinetics equations since it preserves spatial resolution during the transient and provides equivalence with the high-order method through nonlinear diffusion coefficients. As TD-CMFD computes time-dependent and spatially dependent neutronics information, it also computes frequencies that describe the rate of change of neutron and delayed precursor concentrations. These frequencies are used in MC shape function calculations as an approximation for the time derivatives. As the simulation proceeds, MC calculations update the multigroup cross sections, currents, and diffusion coefficients that are needed in TD-CMFD, and in turn, TD-CMFD updates the frequencies. Our results show the success of the Frequency Transform method in prescribed transient problems on the C5G7 geometry and on a fuel pin geometry. The Frequency Transform method showed significant improvement compared to the Adiabatic approximation, which does not use any frequency information in the MC calculation. The improvements in spatial resolution are shown to be a direct result of frequencies. Additionally, a study of how TD-CMFD’s nonlinear diffusion coefficients behave in time provides a first-of-its-kind study of how equivalence factors are impacted by transients.