ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Emily H. Vu, Aaron J. Olson
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 212-232
Technical Paper | doi.org/10.1080/00295639.2022.2116378
Articles are hosted by Taylor and Francis Online.
Conditional Point Sampling (CoPS) is our newly proposed Monte Carlo method for transport in stochastic media that has been demonstrated to achieve highly accurate mean response results and to compute variance of the mean caused by random spatial mixing. The ability of CoPS to efficiently characterize the effects of random spatial mixing beyond the mean is hindered by the algorithm’s potentially unbounded computer memory footprint. Thus, in previous work, we established two limited-memory techniques for CoPS to improve required computer memory, i.e., recent memory (RM) CoPS and amnesia radius (AR) CoPS, the latter of which enables CoPS to tractably compute probability density functions (PDFs) of response. In this work, we create a limited-memory framework that allows CoPS to combine the advantages of limited-memory techniques and populate the framework with the two inaugural techniques of RM and AR. The proposed framework enables the user to control the computational performance of CoPS by making problem-specific trade-offs between accuracy, computer memory footprint, and characterization of response distributions based on input parameters. We present mean leakage results, material-dependent scalar flux, leakage PDFs, and computer memory footprint computed using this new framework. By selecting different input parameters in our proposed limited-memory framework, CoPS is demonstrated to roughly match the accuracy and computer memory footprint of the established approximate method Chord Length Sampling or to provide response distribution information comparable to the brute-force benchmark approach while improving the computer memory footprint compared to the original CoPS algorithm.