ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
In an international industry, regulators cross the border too
Since nuclear physics works the same in Ontario as it does in Tennessee, the industry has been trying to create a reactor that can be deployed on both sides of the border. Now, the Nuclear Regulatory Commission and the Canadian Nuclear Safety Commission have decided that some of their rulings can cross the border too.
Tomohiro Endo, Fuga Nishioka, Akio Yamamoto, Kenichi Watanabe, Cheol Ho Pyeon
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 176-188
Technical Paper | doi.org/10.1080/00295639.2022.2049992
Articles are hosted by Taylor and Francis Online.
The Pál-Bell equation is a backward-type master equation that describes the probability generating function (PGF) of neutron counts in a neutron multiplication system. Thanks to the Pál-Bell equation with the two-forked and the fundamental mode approximations, an analytical solution of PGF of neutron counts in a source-driven subcritical system can be theoretically derived. This theoretical derivation clarifies that the unique combination number of double factorial (2n−3)!! does exist in the ratio of the higher-order neutron correlation factors measured in a critical state even for any kind of fissile and moderator materials. Additionally, the unique combination numbers are experimentally validated for the order 3 ≤ n ≤ 6 through reactor noise measurements in actual subcritical systems. This knowledge can be used to judge whether a target system is in a deep subcritical state or to roughly estimate the magnitude of subcriticality, based on the factorial moments of the measured reactor noise in a zero-power state.