ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Tomohiro Endo, Fuga Nishioka, Akio Yamamoto, Kenichi Watanabe, Cheol Ho Pyeon
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 176-188
Technical Paper | doi.org/10.1080/00295639.2022.2049992
Articles are hosted by Taylor and Francis Online.
The Pál-Bell equation is a backward-type master equation that describes the probability generating function (PGF) of neutron counts in a neutron multiplication system. Thanks to the Pál-Bell equation with the two-forked and the fundamental mode approximations, an analytical solution of PGF of neutron counts in a source-driven subcritical system can be theoretically derived. This theoretical derivation clarifies that the unique combination number of double factorial (2n−3)!! does exist in the ratio of the higher-order neutron correlation factors measured in a critical state even for any kind of fissile and moderator materials. Additionally, the unique combination numbers are experimentally validated for the order 3 ≤ n ≤ 6 through reactor noise measurements in actual subcritical systems. This knowledge can be used to judge whether a target system is in a deep subcritical state or to roughly estimate the magnitude of subcriticality, based on the factorial moments of the measured reactor noise in a zero-power state.