ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Yu-Hung Shih, Mei-Ya Wang, Tsuey-Lin Tsai, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 92-103
Technical Paper | doi.org/10.1080/00295639.2022.2102392
Articles are hosted by Taylor and Francis Online.
Activated corrosion products deposited on the surfaces of fuel rods and pipelines contribute the majority of the radiation level in the primary system piping of a light water reactor and would have a significant impact on the safety of maintenance personnel or those involved in future decommissioning work. A computer model for site-specific applications, by the name of ACP_BWR, was developed to predict the distribution of activated corrosion products in the primary coolant circuit of a boiling water reactor (BWR). The prediction results were in reasonably good agreement with the data taken by periodic and in situ measurements at three locations after permanent shutdown of the BWR. Our analyses indicated that the 60Co, 54Mn, 58Co, and 59Fe activities in the core bypass, upper plenum, and lower downcomer regions were higher than those at other regions of the Chinshan Unit 1 reactor. Accordingly, the dose rates resulting from the activated corrosion products deposited at regions close to either side of the core shroud were comparatively high, surpassing those induced by neutron activation at these regions.