ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Yu-Hung Shih, Mei-Ya Wang, Tsuey-Lin Tsai, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 92-103
Technical Paper | doi.org/10.1080/00295639.2022.2102392
Articles are hosted by Taylor and Francis Online.
Activated corrosion products deposited on the surfaces of fuel rods and pipelines contribute the majority of the radiation level in the primary system piping of a light water reactor and would have a significant impact on the safety of maintenance personnel or those involved in future decommissioning work. A computer model for site-specific applications, by the name of ACP_BWR, was developed to predict the distribution of activated corrosion products in the primary coolant circuit of a boiling water reactor (BWR). The prediction results were in reasonably good agreement with the data taken by periodic and in situ measurements at three locations after permanent shutdown of the BWR. Our analyses indicated that the 60Co, 54Mn, 58Co, and 59Fe activities in the core bypass, upper plenum, and lower downcomer regions were higher than those at other regions of the Chinshan Unit 1 reactor. Accordingly, the dose rates resulting from the activated corrosion products deposited at regions close to either side of the core shroud were comparatively high, surpassing those induced by neutron activation at these regions.