ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
BWXT’s Centrifuge Manufacturing Development Facility opens in Oak Ridge
BWX Technologies announced on January 26 that it has begun operating its Centrifuge Manufacturing Development Facility in Oak Ridge, Tenn., with the purpose of reestablishing a domestic uranium enrichment capability to meet U.S. national security needs. The facility is part of a program funded by the Department of Energy’s National Nuclear Security Administration to supply enriched uranium for defense needs.
Yu-Hung Shih, Mei-Ya Wang, Tsuey-Lin Tsai, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 92-103
Technical Paper | doi.org/10.1080/00295639.2022.2102392
Articles are hosted by Taylor and Francis Online.
Activated corrosion products deposited on the surfaces of fuel rods and pipelines contribute the majority of the radiation level in the primary system piping of a light water reactor and would have a significant impact on the safety of maintenance personnel or those involved in future decommissioning work. A computer model for site-specific applications, by the name of ACP_BWR, was developed to predict the distribution of activated corrosion products in the primary coolant circuit of a boiling water reactor (BWR). The prediction results were in reasonably good agreement with the data taken by periodic and in situ measurements at three locations after permanent shutdown of the BWR. Our analyses indicated that the 60Co, 54Mn, 58Co, and 59Fe activities in the core bypass, upper plenum, and lower downcomer regions were higher than those at other regions of the Chinshan Unit 1 reactor. Accordingly, the dose rates resulting from the activated corrosion products deposited at regions close to either side of the core shroud were comparatively high, surpassing those induced by neutron activation at these regions.