ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Dong Yang, Lin Chen, Yongchang Feng, Haisheng Chen
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 74-91
Technical Paper | doi.org/10.1080/00295639.2022.2102391
Articles are hosted by Taylor and Francis Online.
The heat transfer characteristic of supercritical water is one of the crucial issues in SuperCritical Water-Cooled Reactors (SCWRs). The efficiency and safety of the SCWR system are largely dependent on the local heat transfer performance. This paper establishes the numerical model for supercritical water in a long vertical circular loop (inside diameter = 10 mm) and analyzes the flow and heat transfer mechanism during the transition process from subcritical to supercritical states under various heat fluxes (uniform and nonuniform). The results reveal that the difference in thermophysical properties between the boundary layer and the core region is the main reason for the heat transfer behavior, especially during the transition from subcritical to supercritical and liquidlike to gaslike. The flow structure on the buffer layer is a dominating factor for heat transfer deterioration. The cases under variable nonuniform heat fluxes have a higher heat transfer coefficient compared with uniform heat fluxes. But, this will cause large changes of the parameter locally. The dominating factors of heat transfer deterioration under these conditions are also identified.