ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Daniel Siefman, Mathieu Hursin, Catherine Percher, David Heinrichs
Nuclear Science and Engineering | Volume 197 | Number 1 | January 2023 | Pages 14-24
Technical Paper | doi.org/10.1080/00295639.2022.2103344
Articles are hosted by Taylor and Francis Online.
Thermal neutron scattering laws are important nuclear data for many nuclear science and engineering applications. Validation helps to ensure that a thermal neutron scattering law has a high quality and often employs critical benchmarks as integral experiments. Recently, pulsed-neutron die-away benchmarks have been used as an experiment to validate thermal neutron scattering laws. Herein, we evidence how this alternative integral experiment has a high sensitivity to these nuclear data by performing an uncertainty quantification analysis. The analysis randomly sampled the nuclear model parameters associated with hydrogen bound in light water thermal neutron scattering law and sampled other nuclear data that influenced the experiment’s integral parameter (e.g., elastic scattering, absorption in hydrogen and oxygen) from their respective covariance matrices. The thermal neutron scattering law caused an uncertainty in the integral parameter that reached 2.67%, which exceeds by an order of magnitude the uncertainties induced in commonly used thermal solution critical benchmarks. The validation performed here, although limited due to a poor description of the historical experiment, indicated that the ENDF/B-VIII.0 thermal neutron scattering law well predicted the integral parameter. These results motivate further benchmark and validation efforts using pulsed-neutron die-away experiments.