ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Prasad Vegendla, A. Bergeron, S. Mohanty, A. Talamo, F. Heidet, B. Ade, B. R. Betzler
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1572-1580
Technical Note | doi.org/10.1080/00295639.2022.2123195
Articles are hosted by Taylor and Francis Online.
This technical note deals with simulation-based design optimization for the ex-core Transformational Challenge Reactor (TCR). Three-dimensional geometry was created for the TCR ex-core. Computational fluid dynamics (CFD) simulations were performed to optimize forced circulation airflow. The CFD model includes thermofluidic phenomena such as convective, conductive, and radiative heat transfer. The simulation results are presented for three different inlet coolant mass flow rates (2, 4, and 8 kg/s). The observed optimized flow rate for the base configuration was 5 kg/s. The calculated peak temperatures were within the safety limits for all components including the bio-shield (433 K) and the shroud mechanism (473 K).