ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Prasad Vegendla, A. Bergeron, S. Mohanty, A. Talamo, F. Heidet, B. Ade, B. R. Betzler
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1572-1580
Technical Note | doi.org/10.1080/00295639.2022.2123195
Articles are hosted by Taylor and Francis Online.
This technical note deals with simulation-based design optimization for the ex-core Transformational Challenge Reactor (TCR). Three-dimensional geometry was created for the TCR ex-core. Computational fluid dynamics (CFD) simulations were performed to optimize forced circulation airflow. The CFD model includes thermofluidic phenomena such as convective, conductive, and radiative heat transfer. The simulation results are presented for three different inlet coolant mass flow rates (2, 4, and 8 kg/s). The observed optimized flow rate for the base configuration was 5 kg/s. The calculated peak temperatures were within the safety limits for all components including the bio-shield (433 K) and the shroud mechanism (473 K).