ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
John Pevey, Briana Hiscox, Austin Williams, Ondřej Chvála, Vladimir Sobes, J. Wesley Hines
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1559-1571
Technical Paper | doi.org/10.1080/00295639.2021.1987133
Articles are hosted by Taylor and Francis Online.
This paper presents a gradient-informed design optimization of nuclear reactor core components based on neutronics objectives with both continuous and discrete materials. The main argument in favor of using gradient-informed design optimization is that it scales well with increasing dimensionality of the design space. First, a challenge problem with 121 free parameters is solved with a gradient-informed method and then with a genetic algorithm. Then, a challenge problem to optimize the flux profile of a simplified assembly with eight axial zones is solved. Both challenge problems are solved using directly calculated derivatives from Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) in the SCALE package. This work also demonstrates how a discrete optimization problem—selection of materials for 121 voxels—can be lifted into a continuous problem with mixed materials. In the continuous space, adjoint-based gradients are well-defined, and gradient descent is applicable. Then, a forcing function is introduced that with the selection of an appropriately sized hyperparameter can be used to guide the optimized continuous solution back into a discrete solution. This paper presents an account of the challenges that were faced when applying a gradient-informed optimization algorithm using a Monte Carlo calculation to estimate the gradient information and compares a gradient descent optimization method to a genetic algorithm optimization of the same geometry. Overall, this work demonstrates the potential use of adjoint-based gradient calculations in design optimization of nuclear systems.