ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
PNNL seeks high-energy neutrons from SpaceX launch of Polaris Dawn
When a SpaceX rocket lifted off from Kennedy Space Center on September 10 (see video here), sending a crewed commercial mission into low Earth orbit, an experiment designed by Pacific Northwest National Laboratory was onboard. Several high-purity metal samples will orbit Earth and absorb cosmic radiation for five days—including that from the Van Allen radiation belt—to help the lab answer questions about the radiation environment for manned space missions, according to a news release from PNNL.
Brian J. Ade, Daniel P. Schappel, Benjamin R. Betzler, Grant W. Helmreich, Alberto Talamo, Dylan D. Richardson, Michael P. Trammel, Brian P. Jolly, Austin T. Schumacher, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1517-1538
Technical Paper | doi.org/10.1080/00295639.2022.2049995
Articles are hosted by Taylor and Francis Online.
Detailed analysis of the particle distribution in Transformational Challenge Reactor fuel elements indicates that particle packing is not random; instead, it follows a relatively ordered structure near fuel element surfaces. Discrete particle neutronic simulations indicate that the core reactivity is not impacted when assuming homogenization of particles with the silicon carbide matrix. However, the neutronic power distribution resulting from the ordered packing structure indicates that the highest-power particles reside at the top and bottom of the fuel elements and nearest the YH1.85 moderator rods. The power distribution results were applied to thermomechanical simulations using mesh-based power distributions. Previous results indicated high stress at the bottom of the fuel element, where packing is most ordered. To reduce this stress concentration, additively manufactured protrusions were added to the bottom of a test fuel element to disrupt dense particle packing. These protrusions reduced the overall power peaking, but the thermomechanical simulations did not indicate a significant change in the fuel element’s maximum stress or failure probability.