ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC report updates decommissioning cost guidance
The Nuclear Regulatory Commission has updated its guidance for nuclear power plant owners and operators in estimating the cost of decommissioning their reactors. Licensed power reactor operators are required under NRC regulations to annually adjust the estimated costs (in current year U.S. dollars) of decommissioning their plants to ensure that adequate funds are available when needed.
Brian J. Ade, Daniel P. Schappel, Benjamin R. Betzler, Grant W. Helmreich, Alberto Talamo, Dylan D. Richardson, Michael P. Trammel, Brian P. Jolly, Austin T. Schumacher, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1517-1538
Technical Paper | doi.org/10.1080/00295639.2022.2049995
Articles are hosted by Taylor and Francis Online.
Detailed analysis of the particle distribution in Transformational Challenge Reactor fuel elements indicates that particle packing is not random; instead, it follows a relatively ordered structure near fuel element surfaces. Discrete particle neutronic simulations indicate that the core reactivity is not impacted when assuming homogenization of particles with the silicon carbide matrix. However, the neutronic power distribution resulting from the ordered packing structure indicates that the highest-power particles reside at the top and bottom of the fuel elements and nearest the YH1.85 moderator rods. The power distribution results were applied to thermomechanical simulations using mesh-based power distributions. Previous results indicated high stress at the bottom of the fuel element, where packing is most ordered. To reduce this stress concentration, additively manufactured protrusions were added to the bottom of a test fuel element to disrupt dense particle packing. These protrusions reduced the overall power peaking, but the thermomechanical simulations did not indicate a significant change in the fuel element’s maximum stress or failure probability.