ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
SUPER agreement signed between INL and Missouri S&T
Idaho National Laboratory this week signed a memorandum of understanding with the Missouri University of Science and Technology that highlights the joint commitment of the institutions to the Strategic Understanding for Premier Education and Research (SUPER) initiative.
Brian J. Ade, Daniel P. Schappel, Benjamin R. Betzler, Grant W. Helmreich, Alberto Talamo, Dylan D. Richardson, Michael P. Trammel, Brian P. Jolly, Austin T. Schumacher, Kurt A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1517-1538
Technical Paper | doi.org/10.1080/00295639.2022.2049995
Articles are hosted by Taylor and Francis Online.
Detailed analysis of the particle distribution in Transformational Challenge Reactor fuel elements indicates that particle packing is not random; instead, it follows a relatively ordered structure near fuel element surfaces. Discrete particle neutronic simulations indicate that the core reactivity is not impacted when assuming homogenization of particles with the silicon carbide matrix. However, the neutronic power distribution resulting from the ordered packing structure indicates that the highest-power particles reside at the top and bottom of the fuel elements and nearest the YH1.85 moderator rods. The power distribution results were applied to thermomechanical simulations using mesh-based power distributions. Previous results indicated high stress at the bottom of the fuel element, where packing is most ordered. To reduce this stress concentration, additively manufactured protrusions were added to the bottom of a test fuel element to disrupt dense particle packing. These protrusions reduced the overall power peaking, but the thermomechanical simulations did not indicate a significant change in the fuel element’s maximum stress or failure probability.