ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A good narrative for nuclear power
Melbye
During an interview for Kitco News at the 2025 Prospectors & Developers Association of Canada (PDAC) Convention, held in Toronto in early March, the chief executive of British Columbia–based Uranium Royalty Corp. noted, “I’ve never seen a better narrative around nuclear power [and] uranium.”
CEO Scott Melbye, who is also executive vice president of Texas-based Uranium Energy Corp. and has 41 years of experience in the uranium sector, added that nuclear energy has gone from stagnation or decline to a point where it may double by 2040.
Justin Weinmeister, Casey J. Jesse, Prashant Jain, Brian J. Ade, Danny Schappel
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1496-1516
Technical Paper | doi.org/10.1080/00295639.2022.2096999
Articles are hosted by Taylor and Francis Online.
Additive manufacturing (AM) methods are currently being explored for applications in nuclear reactors to make advanced reactors more efficient, safe, and reliable. The Transformational Challenge Reactor (TCR) program has explored AM for nuclear by designing a high-temperature gas reactor (HTGR) using an AM silicon carbide fuel form with uranium nitride–tristructural isotropic fuel. This work details the design process for the TCR fuel form’s coolant channels using computational fluid dynamics models with conjugate heat transfer. Additionally, this work discusses how these models were interfaced with other design teams, project milestones, and the agile design method used to mature the reactor design. The methodology deployed was able to create a channel design with lower maximum fuel temperatures and thermal stresses in the fuel form over traditional channel designs that can be manufactured subtractively. These results were achieved with only small manufacturing penalties. Results are discussed and presented on lessons learned for designing AM components for nuclear reactors. Finally, areas of opportunity are discussed for advanced design tools to further automate design activities and optimize reactors with fewer built-in assumptions.