ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Justin Weinmeister, Casey J. Jesse, Prashant Jain, Brian J. Ade, Danny Schappel
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1496-1516
Technical Paper | doi.org/10.1080/00295639.2022.2096999
Articles are hosted by Taylor and Francis Online.
Additive manufacturing (AM) methods are currently being explored for applications in nuclear reactors to make advanced reactors more efficient, safe, and reliable. The Transformational Challenge Reactor (TCR) program has explored AM for nuclear by designing a high-temperature gas reactor (HTGR) using an AM silicon carbide fuel form with uranium nitride–tristructural isotropic fuel. This work details the design process for the TCR fuel form’s coolant channels using computational fluid dynamics models with conjugate heat transfer. Additionally, this work discusses how these models were interfaced with other design teams, project milestones, and the agile design method used to mature the reactor design. The methodology deployed was able to create a channel design with lower maximum fuel temperatures and thermal stresses in the fuel form over traditional channel designs that can be manufactured subtractively. These results were achieved with only small manufacturing penalties. Results are discussed and presented on lessons learned for designing AM components for nuclear reactors. Finally, areas of opportunity are discussed for advanced design tools to further automate design activities and optimize reactors with fewer built-in assumptions.