ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Justin Weinmeister, Casey J. Jesse, Prashant Jain, Brian J. Ade, Danny Schappel
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1496-1516
Technical Paper | doi.org/10.1080/00295639.2022.2096999
Articles are hosted by Taylor and Francis Online.
Additive manufacturing (AM) methods are currently being explored for applications in nuclear reactors to make advanced reactors more efficient, safe, and reliable. The Transformational Challenge Reactor (TCR) program has explored AM for nuclear by designing a high-temperature gas reactor (HTGR) using an AM silicon carbide fuel form with uranium nitride–tristructural isotropic fuel. This work details the design process for the TCR fuel form’s coolant channels using computational fluid dynamics models with conjugate heat transfer. Additionally, this work discusses how these models were interfaced with other design teams, project milestones, and the agile design method used to mature the reactor design. The methodology deployed was able to create a channel design with lower maximum fuel temperatures and thermal stresses in the fuel form over traditional channel designs that can be manufactured subtractively. These results were achieved with only small manufacturing penalties. Results are discussed and presented on lessons learned for designing AM components for nuclear reactors. Finally, areas of opportunity are discussed for advanced design tools to further automate design activities and optimize reactors with fewer built-in assumptions.